System x_c^- activity determines extracellular hippocampal and striatal glutamate levels: implications for neurological disorders associated with excessive glutamate release

Smolders I1, De Bundel D1, Schallier A1, Kim SW2, Fernando R3, Kobayashi S4, Miyashita H4, Beck H5, Van Liefferinge J1, Loyens E1, Vermoesen K1, Bannai S4, Conrad M6, Plesnila N2, Sato H4, Michotte Y1, Massie A1

1Center for Neurosciences C4N, Vrije Universiteit Brussel, Belgium; 2Royal College of Surgeons in Ireland (RCSI), Ireland; 3Dept Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden; 4Dept Food and Applied Life Sciences, Yamagata University, Japan. 5Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-University, Germany; 6German Center for Neurodegenerative Diseases and Helmholtz Center Munich, Germany.

(*Ilse.Smolders@vub.ac.be)

Introduction

Malfunctioning of the cysteine/glutamate antiporter or the so-called system x_c^-, responsible for exchanging intracellular glutamate for extracellular cysteine, can cause oxidative stress as well as excitotoxicity, important phenomena in the pathogenesis of Parkinson’s disease and epilepsy [1].

Methods

We used mice lacking xCT (xCT−/− mice), the specific subunit of system x_c^-, to study in vivo the effect of system x_c deficiency on striatal and hippocampal glutathione content and extracellular glutamate concentrations. Next, we investigated the sensitivity of xCT−/− mice for a Parkinson’s disease inducing toxin (6-hydroxydopamine, 6-OHDA) as well as for various chemoconvulsants evoking limbic seizures.

Results and Discussion

Although cysteine imported via system x_c is intracellularly reduced to cysteine, the rate-limiting substrate in glutathione synthesis, deletion of xCT did not affect striatal or hippocampal glutathione levels. Accordingly, no signs of increased oxidative stress were seen in xCT−/− mice. However, extracellular hippocampal and striatal glutamate levels were decreased with >60% in xCT−/− mice compared to controls. In addition, intrahippocampal perfusion with system x_c inhibitors lowered extracellular glutamate whereas the system x_c activator N-acetylcysteine elevated extracellular glutamate in the rat hippocampus. This indicates that
system x_c^- may be an interesting target for pathologies associated with excessive extracellular glutamate release. Correspondingly, xCT deletion in mice elevated the threshold for limbic seizures and abolished the proconvulsive effects of N-acetylcysteine [2]. Moreover, in sharp contrast to the expectations, xCT$^{-/-}$ mice were less susceptible to 6-OHDA-induced neurodegeneration in substantia nigra pars compacta compared to wildtype littermates [3].

The current data sustain that system x_c^- is an important source of hippocampal and striatal extracellular glutamate and an innovative target for the future development of antiepileptic and/or neuroprotective drugs.

References

